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ABSTRACT: This study develops a probability framework to
evaluate subsurface risks associated with commercial-scale carbon
sequestration in the Kevin Dome, Montana. Limited knowledge of the
spatial distribution of physical attributes of the storage reservoir and
the confining rocks in the area requires using regional data to estimate
project risks during the pre-site characterization analysis. A set of
integrated Monte Carlo simulations are used to assess four risk
proxies: the CO2 injectivity, area of review (AoR), migration rate into
confining rocks, and a monitoring strategy prior to detailed site
characterization. Results show a reasonable likelihood of reaching the
project goal of injecting 1 Mt in 4 years with a single injection well
(>58%), increasing to >70% if the project is allowed to run for 5 years.
The mean radius of the AoR, based on a 0.1 MPa pressure change, is
around 4.8 km. No leakage of CO2 through the confining units is seen
in any simulations. The computed CO2 detection probability suggests that the monitoring wells should be located at less than 1.2
km away from the injection well so that CO2 is likely to be detected within the time frame of the project. The scientific results of
this study will be used to inform the detailed site characterization process and to provide more insight for understanding
operational and technical risks before injecting CO2.

■ INTRODUCTION

CO2 sequestration in geologic reservoirs is an important
approach to mitigating greenhouse gas emissions to the
atmosphere.1−3 The Big Sky Carbon Sequestration Partnership
(BSCSP) is one of seven partnerships tasked by the U.S.
Department of Energy with demonstrating the feasibility of
large scale CO2 injection into the subsurface. These projects
play a significant role in helping to shape our understanding of
the interplay between infrastructure, technology, and regu-
lations. The BSCSP is unique among these projects in that CO2
will be produced from an existing natural accumulation and
reinjected down-dip into the same geologic formation.4 Prior to
developing CO2 injection sites, operators are required to
perform a detailed analysis of features, events, and processes
(FEPs)5 that have the potential to impact the environment,
human health and safety, economics, and/or project milestones.
A FEPs analysis performed for the BSCSP included
consideration of the subsurface and resulted in a ranked list
based on expert opinion.6 Subsurface FEPs of concern for the
BSCSP project include: risk of insufficient permeability to inject
1 million tonnes CO2 during the project lifetime; risk of leaked
CO2 impacting overlying drinking water aquifers, which may
cause a decrease in groundwater pH and could potentially
degrade groundwater quality;7−22 risk of CO2 and/or brine
escape from the storage reservoirs through overlying confining

rocks via preferential pathways, such as high-permeability
zones, faults, and abandoned wells; and risk of ineffective
placement of monitoring wells and the resulting inability to
detect plume migration.
At the beginning of projects, such as the Big Sky Carbon

Sequestration Project, there is often insufficient local geologic
data available to perform well-constrained risk analyses of
project success. Nonetheless, project operators, funders and
regulators require a preinjection risk analysis that identifies
potential problem areas and provides guidance on the
probability of success. Such analyses can inform early decisions
in the site characterization process, such as placement of
characterization wells that will later serve as monitoring wells,
intervals to core and analyze, appropriate well tests to be
performed, and areas to be permitted, that can have an
additional impact on probability of success. In the absence of
site specific data, this requires that the analysis of subsurface
FEPs be performed using numerical simulations that rely on
data from the surrounding region. For example, Deng et al.19

used a field-scale example at the Rock Springs Uplift (RSU),
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Wyoming, to explore the impacts of reservoir heterogeneity on
CO2 storage capacity, injectivity, and the potential migration
into confining rocks. Their results indicate that reservoir
heterogeneity has a large impact on the computed CO2
injectivity and the potential migration into confining rocks.
Recent drilling at the RSU site has shown that heterogeneity is
necessary to correctly represent reservoir injectivity and storage
capacity.23 The present study takes the heterogeneous
properties of the reservoir and confining rocks as one of the
major factors governing four primary subsurface FEPs and uses
the BSCSP’s Kevin Dome CO2 sequestration site in Montana
as an example to demonstrate the usefulness of a probability
framework for pre-site characterization risk analysis.
Kevin Dome (see Figure 1a) is a large geologic feature that

covers roughly 700 square miles in Toole County, Montana.
The Kevin Dome Project (managed by the Big Sky Carbon
Sequestration Partnership) will produce 1 Mt (million tonnes)
of CO2 from a natural source within the dome. The CO2 will be
transported by pipeline approximately 10 km to the injection
site. The target CO2 reservoir is at 1100 m depth in the Middle
Duperow formation located in the water leg of the Kevin Dome
CO2 gas deposit. Heterogeneity of the hydrologic properties of
the Middle Duperow reservoir and the confining rocks is
relatively unknown. Previous studies in nearby oil fields provide
some information about the range and distribution of reservoir
parameters, such as depth, thickness, permeability, and
porosity.24 We use the statistical distributions of these uncertain
parameters to generate Monte Carlo simulations of reservoir
performance in order to assist with planning and development
of the Kevin Dome sequestration site. The simulations are
conducted by coupling the uncertainty quantification tool
PSUADE,25 the Los Alamos developed geostatistical modeling
tool GEOST26,27 modified from the Geostatistical Software
Library28 and the multiphase reservoir simulator FEHM.29 We
use PSUADE to sample distributions of the reservoir and
confining rocks and evaluate the statistical distribution of CO2

plumes. GEOST is used to generate spatial distributions of
heterogeneous parameters for the reservoir and confining rocks
from limited borehole log data available outside the site. The
reservoir simulator, FEHM, is applied to model the flow of CO2
and water in the reservoir and confining rocks for each
generated heterogeneous field. Finally, we conduct a prelimi-
nary risk analysis using the results of the Monte Carlo
simulations to quantitatively evaluate the following risk proxies
that relate to the four primary subsurface FEPs: (1) CO2
injectivity; (2) radius of the Area of Review (AoR); (3) CO2
migration out of the injection horizon; and (4) optimum
location of monitoring wells. Risk proxies are defined as
measurable quantities that can be used to gain insight into
project risk without the need to generate a rigorous
consequence structure.

■ MATERIALS AND METHODS
Characterization of Multiscale Heterogeneity. The

Duperow formation within the Kevin Dome site is found at
depths ranging from 1000 to 1900 m with a total thickness of
between 125 and 260 m. The relatively high-permeability
Middle Duperow Formation is the limestone-dolostone
injection target reservoir, with thickness between 20 and 58
m (Figure 1b). The permeability values in the Middle Duperow
are between 1 and 210 mD with porosity between 0.05 and
0.25. The overlying caprock, consisting of variable dolostone,
shale, and anhydrite formations (e.g., Upper Duperow
formation, 90 m thick; Nisku formation, 15−23 m thick; and
Potlatch formation, about 50 m thick), has a mean thickness
around 160 m and a much lower permeability (between 0.001
and 10 mD and porosity 0.01−0.1). Below the target reservoir,
the Lower Duperow is used as “basement” in the model. Its
thickness is around 90 m and its permeability and porosity
distributions are similar to the Upper Duperow Formation.4,6

Statistics of Well Log Data. There are no site-specific core
or log data for the planned injection site. Consequently, we use

Figure 1. Kevin Dome site location (a) (from BSCSP Web site: www.bigskyco2.org/research/geologic) and a diagrammatic cross section through
the injection well (b).

Figure 2.Well log data for the middle Duperow with a thickness of 16 m and a porosity bound between 0.05 and 0.22 (a) and the semivariograms of
the log permeability (b).

Environmental Science & Technology Article

dx.doi.org/10.1021/es405468p | Environ. Sci. Technol. 2014, 48, 3908−39153909

www.bigskyco2.org/research/geologic


data from a well, MCFGPD-2175, located within 15 km of the
site that penetrates the targeted Middle Duperow injection
horizon.6 The log data from well MCFGPD-2175 were used to
define the porosity distributions in the Middle Duperow
(Figure 2a). The log curves span a porosity distribution
between 0.05 and 0.22. Based on these data we convert the
porosity data to permeabilities according to Bernabe et al.30 and
Deng et al.:19

=k aøb (1)

where k is permeability (m2), ø is porosity, a and b are
constants as defined in Deng et al.19

By using the converted log permeability data we compute the
sample semivariograms using eq 2 in the vertical direction and
fit the results with an exponential function (eq 3)28,31
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where, γŶ and γY are the sample and modeled semivariograms of
log permeability data Y, respectively, N(h) is the pair number at
a lag distance of h, zi and zj are two points separated by a
distance h, σ2 is variance, and λ is the integral scale.
The results for fitting eq 2 with eq 3 are shown in Figure 2b.

The estimated statistical parameters of the log permeability are
a variance of 0.25, vertical integral scale of 5 m, and mean
permeability of 3 × 10−14 m2. Based on the variogram analysis
results and other regional geological data,4,24,32 we summarize
the ranges and distributions of the uncertain parameters for
simulating the heterogeneity of the reservoir and the confining
rocks (e.g., caprock and basement) in Table 1. The reservoir
and confining rock permeabilities are normally distributed and
are positively correlated with the unit porosity. Other

parameters listed in the table satisfy uniform distributions.
Having limited existing data, we assume that the lower and
upper bounds of the horizontal integral scales are 1000 times
larger than those of the vertical integral scales for both the
reservoir and the confining rocks. The permeability anisotropy
factors for the reservoir and confining rocks are assumed to be
the same. The mean permeability in the caprock and basement
is 3 orders of magnitude lower than that in the reservoir and the
variance is a half of that of the reservoir.

Parameter Sampling. PSUADE and GEOST are coupled
in our methodology, generating 300 realizations with Latin
Hypercube sampling and geostatistical modeling, to perform an
integrated Monte Carlo simulation of CO2 injection and
transport in the reservoir, caprock, and basement. For each
realization the heterogeneous permeability fields for the
reservoir (Middle Duperow), caprock, and basement are
simulated with the sequential Gauss method since they have
quite different mean permeabilities and variances. An example
of a simulated permeability field for caprock, basement, and
reservoir is shown in Figure 3.

CO2 Injection Simulations. FEHM is used to simulate
CO2 injection and the subsequent flow of both CO2 and water
at the Kevin Dome injection site for 300 realizations. The
computational model size is 20 000 × 20 000 × 280 m with
197 213 nodes. The injection well is located in the center of the
model where the grid is highly refined with minimum grid sizes
dx, dy, dz of 3, 3, and 1 m, respectively. Away from the injection
well, the numerical mesh becomes coarse (Figure 3b). A mixed
van Genuchten/Brooks Corey relative permeability33 model is
selected for water/CO2 multiphase flow simulations and the
related coefficients are adopted from references33−35. The
numerical simulations start from hydrostatic conditions (gravity
equilibrium) and then simulate the injection of CO2 in the
reservoir for 4 years. Far-field pressure on lateral and top model

Table 1. Parameter Uncertainty for the Kevin Dome Site

uncertain parameters min. max. mean standard deviation distribution

reservoir (Middle Duperow) permeability variance(rVar) 0.1 0.5 uniform
perm scale (rScale, km) 0.5 5.0 uniform
anisotropy factor (rFkxz) 1.0 50 uniform
permeability (rKmean, log m2) −15.6 −11.6 −13.5 0.5 normal
porosity (rPor) 0.05 0.22 0.08 0.05 normal

confining rocks porosity (cPor) 0.01 0.12 0.05 0.02 normal
permeability(cKmean,log m2) −18.6 −14.6 −16.5 0.25 normal
permeability variance (cVar) 0.1 0.25 uniform

Figure 3. Simulated heterogeneous caprock and reservoir permeability field (a) and numerical grid (b) in 3-D view from one realization.
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boundaries is maintained at the initial hydrostatic pressure at all
times, while the bottom boundary is fixed as no-flow. The CO2
pressure at the injection point is fixed at 18.5 MPa and is based
on the hydrofracture limit for the Duperow formation.19 By
fixing the injection pressure, we allow injection rate to vary as a
function of reservoir heterogeneity and time during a 4-year
simulation period (the planned duration of the Big Sky
injection phase). This technique allows us to estimate the
probability of the Big Sky Project reaching its goal of 1 Mt in 4
years. By the end of most realizations, the simulated CO2
plume extends from 1 to 2 km in the horizontal direction (at
the top of the Middle Duperow). Because supercritical CO2 has
a lower density than the brine in the reservoir, the injected CO2
mainly migrates horizontally by pressure differences and
upward by buoyancy resulting in the plume having a larger
width at the upper part of the reservoir. For each realization a
postprocessing step is conducted to compute statistics on three
of the risk proxies, splitting the migration proxy into caprock
and basement migration components including: the total CO2
injection in 4 years (inj4yr), the radius of the area of review
(Raor), and the migration rate into the caprock (rc) and
basement (rb). Finally, the fourth risk proxy (monitoring well
location) is calculated by generating a map of probability of
intersecting separate phase CO2 as a function of both distance
and time from the start of injection.

■ RESULTS AND DISCUSSION

The definition of the AoR used in CO2 geological sequestration
is still an active topic of discussion in the sequestration
community. Zhang et al.36 developed a numerical method
based on the vertically integrated mass per area of supercritical
CO2 to delineate the CO2 plume extent for defining the AoR.
Oldenburg and Zhou32 apply EPA’s AoR method37 to the Big
Sky project data, using the minimum elevated pressure in the
injection zone that could lift brine from the injection reservoir
to the deepest underground sources of drinking water. We use
the results of Oldenburg and Zhou33 and assume a minimum
elevated pressure of 0.1 MPa to compute the radius of the AoR.
Note that migration of CO2 into the confining rocks reflects
flow of CO2 out of the Middle Duperow into the surrounding,

relatively impermeable formations. As such, this is not leakage
into overlying drinking water resources but movement of CO2
within the containment zone of the project (e.g., discussed by
Oldenburg and Lewicki38).

Statistics of the Risk Proxies. By using the postprocessing
results of the 300 MC simulations, we conduct a statistical
analysis of the three of the risk proxies, splitting the migration
proxy into caprock and basement migration components. The
mean and standard deviation of the outputs are computed at 20
different time steps. By assuming that these risk proxies are
normally distributed at each time step, we compute the 95%
confidence intervals.39 The results are shown in Figure 4. The
computed mean injection in 4 years is 1.8 Mt (Figure 4a),
which is larger than the 4-year injection target (1 Mt). The
radius of the AoR, computed based on a reference of 0.1 MPa
pressure change, has a mean, lower and upper bounds of 4.8,
3.5, and 6.3 km, respectively (Figure 4b). The mean migration
amount into the caprock and basement is 0.08 and 0.012 Mt,
respectively (Figure 4c and d), which means that about 5% of
the injected CO2 migrates into the confining rocks (e.g.,
caprock and basement). Note that this amount of CO2 mainly
remains within local higher-permeability zones of the Upper
Duperow (4.4%) and Lower Duperow (0.6%) and does not
migrate through the top of the capping sequence (Nisku and
Potlatch formations).
For detailed analysis of the injectivity from the 300

realizations, we use the simulated injection rates at 4 years to
plot a histogram of the total accumulated injection amount
(Figure 5). The results indicate that about 58% of realizations
have a 4-year CO2 injection mass larger than 1 Mt, 70% of the
realizations have a CO2 injection mass larger than 0.8Mt, and
90% of the realizations have a CO2 injection mass larger than
0.6 Mt. Thus, if the project is allowed to operate for an extra
year, the predicted probability of a single injection well being
successful stands at approximately 70%.

Global Sensitivity Analysis. In order to determine the key
flow and transport parameters driving CO2 migration behavior
in the reservoir and confining rocks (basement, and caprock),
global sensitivity analysis techniques were used for investigating
input-output sensitivities over the entire distributions of the

Figure 4. Computed mean and 95% confidence intervals of the four risk proxies for 4 years.
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uncertain parameters (Table 1). The main effect method25,40

was used to quantify the impact of uncertainty and sensitivity of
the input parameters. The main effect method is a variance-
based analysis and it displays first-order “Sobol” indices for the
response surface built from the Monte Carlo simulations.25 The
essence of this analysis is the statistical measure called variance
of condition expectation. The variance-based analysis uses the
following equation:
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where, VCE measures the variability in the conditional expected
value of Y as the input parameter Xk takes on different values, s
is the number of distinct values of each input parameter, and r

is the number of replications. N = sr is the sample size. The
sensitivity of the output variable to the input parameters is
quantified by eq 4 and reranked from 0 to 100 to represent the
importance of the input parameters.25

By using the Monte Carlo simulation results as the input for
PSUADE,25 we conduct global sensitivity analysis with the
main effect method for the first three risk proxies (with
migration split into caprock and basement components). The
results plotted in Figure 6 show that different risk proxies are
sensitive to different parameters. For example, the 4-year
injectivity is mainly controlled by the reservoir porosity and
permeability. The radius of the AoR (which was defined by a
minimum elevated pressure of 0.1 MPa in the reservoir) is most
sensitive to the reservoir permeability. The CO2 migration rates
into the confining rocks (e.g., caprock and basement) are most
sensitive to the mean permeability in these zones, as well as the
permeability variance, integral scale and the anisotropy factor
(Figure 6). This result indicates that the local high permeability
zones in the heterogeneous confining rocks would lead to CO2
migration from the storage reservoir into these zones.

Probability of Detecting the CO2 Plume in a
Monitoring Well. By using the simulated separate phase
CO2 saturation data, we calculate the probability of detecting
the CO2 plumes at a monitoring well within the model domain
using following equation:

=
∑ >=P

I ifC C

N

( )i
N

i i
detect

1 detect

(5)

where, Pdetect is the probability of detection at each numerical
node; N is the number of realizations (e.g., 300); I is the
indicator number, which is equal to 1 if the simulated CO2
saturation Ci is larger than the detection threshold Cdetect
(which is assumed to be 0.001), otherwise, I is equal to 0.
The computed detection probability of the CO2 plumes at 1
year and 4 years are shown in the Abstract Figure (from a cross

Figure 5. Histogram of the computed CO2 injection rates scaled by
1E9 kg in 4 years from 300 MC simulations. About 58% of realizations
have a CO2 4-year injection rate larger than 1 Mt, 70% of the
realizations have a CO2 injection rate larger than 0.8 Mt, and 90% of
the realizations have a CO2 injection rate larger than 0.6 Mt.

Figure 6. Global sensitivity of the four risk proxies to the eight input parameters.
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section through the injection well) and Figure 7 (from an XY
plane view at the top of the Middle Duperow). An XZ plane
view of the detection probability is shown in the TOC Art
Figure. After one year of injection, the predicted CO2 plumes
are small, and only if the monitoring well is located within 0.5
km of the injector will the CO2 plumes be detected with a
probability greater than 75%. After 4 years of injection, CO2
plumes become much larger and monitoring wells located
within 1 to 1.2 km of the injector have greater than a 75%
chance of detecting CO2. Installation within 0.5 km would
increase the likelihood to nearly 100% of detecting CO2 by the
end of the 4-year test.
Implications. The Integrated Monte Carlo (MC) simu-

lations created under a probability framework constructed using
regional data have allowed us to assess CO2 injectivity, the area
of review (AOR), migration rate into confining rocks, and the
probability of detecting the injected CO2 plume in monitoring
wells as a function of distance from a hypothetical injection
location. Global sensitivity results indicate that reservoir
porosity and permeability are the key parameters controlling
the CO2 injectivity and the radius of the AoR. CO2 migration
into the confining rocks is controlled by their permeability,
porosity heterogeneity, and anisotropy factor. Injectivity
analysis indicates that the project goal of injecting 1 Mt in 4
years is likely despite significant uncertainty in the permeability
and porosity heterogeneity. Injectivity is crucial to project
success, and the finite probability of needing more than one
injection well highlights the need to target data collection that
will increase the likelihood of locating higher permeability/
porosity volumes in the injection horizon. The calculated AoR
gives an initial estimate of how many older wells located near
the injection site may require remediation attention and
provides planning guidance on locating far-field monitoring
equipment to verify pressure changes predicted during
preinjection modeling. The potential for small patches of
relatively low permeability in the upper and lower Duperow
suggests that a significant portion (5%) of the injected CO2
could be trapped in these typically tight formations, which is a
form of permanent sequestration.41 The possibility that some
migration may occur into these units gives the project guidance
on selecting storage reservoir bounding units that are highly
likely to contain the entire injected plume. This is quite
important for project success because the bounding units of a
geologic storage facility must be well-defined to pass review by
the EPA, and definition of these boundaries is currently

flexible.42 The pre-site characterization risk analysis also
provides valuable guidance on locating monitoring wells,
which should be within 0.5 km for a high likelihood of
observing the CO2 plume during the first year of injection. The
goal of locating characterization wells that can later be
reworked into monitoring wells has the potential to save
projects significant drilling costs. The statistical methodology
developed in this study can be applied to other CO2 geological
sequestration sites for pre-site characterization risk analysis.
Risk analysis for geological carbon sequestration is an iterative
process. When more site-specific reservoir parameters are
obtained from drilling and injection, we will revisit the
calculations of uncertain parameters to refine our estimates of
risk and performance.
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